Function rotate
Append a rotation transform inferred from arguments to the matrix m. This is equivalent to the expression
rotation(...) * mbut actually save computation by knowing where the ones and zeros are in a pure rotation matrix.
						
				M rotate(M, T)
				(
				
				  in M m,
				
				  in T angle
				
				)
				
				if (isMat!(3, 3, M) && isFloatingPoint!T);
				
				
				M rotate(M, T)
				(
				
				  in M m,
				
				  in T angle
				
				)
				
				if (isMat!(2, 3, M) && isFloatingPoint!T);
				
				
				M rotate(M, T, V)
				(
				
				  in M m,
				
				  in T angle,
				
				  in V axis
				
				)
				
				if (isMat!(4, 4, M) && isFloatingPoint!T && isVec!(3, V));
				
				
				M rotate(M, T, V)
				(
				
				  in M m,
				
				  in T angle,
				
				  in V axis
				
				)
				
				if (isMat!(3, 4, M) && isVec!(3, V) && isFloatingPoint!T);
				
				
				M rotate(M, T)
				(
				
				  in M m,
				
				  in T angle,
				
				  in T x,
				
				  in T y,
				
				  in T z
				
				)
				
				if ((isMat!(3, 4, M) || isMat!(4, 4, M)) && isFloatingPoint!T);
						
					
				Example
import gfxExample
import gfx